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ON THE ORBITAL STABILITY OF A PERIODIC SOLUTION OF THE EQUATIONS OF 
MOTION OF A KOVALEVSKAYA GYROSCOPE* 

A.Z. BRYUM and A.YA. SAVCHENKO 

The sufficient conditions for the orbital stability of a periodic solution 
of the equations of motion of a Kovalevskaya gyroscope in the case of 
Bobylev-Steklov integrability are obtained. 

It is difficult to expect Lyapunov stability for the unsteady motions 
of a heavy solid having a fixed point since a dependence of the vibrations 
frequency on the initial conditions is characteristic for the simplest of 
them, i.e. periodic motions /l/. Moreover, a rougher property of periodic 
solutions of the Euler-Poisson equations, orbital stability /2/, is not 
the subject of special investigations in the dynamics of a solid. The 
algorithm of the present investigation utilizes the treatment ascribed 
Zhukovskii /3/ of orbital stability as the Lyapunov stability of motion 
for a special selection of the variable playing the part of time (see /4/ 
also) and the Chetayev method /5/ of constructing Lyapunov functions from 
the first integrals of the equations of perturbed motion. This latter 
circumstance enables the Chetayevmethodtobe put in one series with the 
methods used in /l, 4, 6-9/, etc. 

1. Under the Kovalevskaya conditions the Euler-Poisson equations and the first integrals 
have the following form in dimensionless variables /lo/ 

2p' = qr, 29’ = --‘p - y’, r’, = y’ 
y’ = yfr - y’q, y” = y’p - yr, y = yq - y’p 
2 @" + q2) + r2 - 2y = 611. 2 (pv + d) + ‘7” = 21 
f + f2 + y”S zz I, (p2-q42+y)Z+(2pq+Y’)a=k* 

(1.1) 

(1.2) 
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If the integration constants k, 11, 1 are related by I= (k2- PO”- 1)l(2p,), 11 = (3p,‘i- 
f - kz)/(6poa), where pO=#=O is a constant whose mechanical meaning is indicated below, then 
(1.1) allows of a family of periodic solutions corresponding to the case of Bobylev-Steklov 
integrability fll/ 

p = pO, q=O, r = r,, (t)= [2k cm ‘p(t) + po+ (1 - k* - po4)1”*, 

y = y,, (t) = k cos ‘p (t) - po2 
y’ = yO’ (t) = -k sin cp (t), y" = y,," (t) = -pOrO (t) 

(1.3) 

The elliptic function cp(t)satisfies the equation 

9' = 7.0 (6) (1.4) 
The solutions determined by (1.3) and (1.4) depend in a substantial manner on the 

arbitrary constants p,, and k and separate out closed orbits /2/ denoted by M(k, pO) in the 
six-dimensional phase space of system (1.1). Without loss of generality, we shall henceforth 
assume k>O. 

We shall confine ourselves to studying the periodic solutions (1.3) and (1.4) in which 
the third component of the angular velocity r,(t)#O during all the motion. The condition 
mentioned is satisfied if and only if 

k + pc2< 2 WI 

When condition (1.5) is satisfied it follows from (1.4) that q(t) increases monotonically 
in the interval[cp(t,);+ m[. Because of the autonomy of system (l.l), we later set t,= 'p (to)= 
0 everywhere. 

2. The configuration of the orbit M (k,pO) in the space R'is determined merely by the 
relationships (1.31, where 'p can be considered to be a parameter. The law of motion of the 
mapping point over these orbits is given by (1.4). 

We will examine arbitrarily close mapping points PIand P2 moving over the orbits M(k, pO) 
and M(k f 6k, po f6pJ respectively, at the initial time. The modulus of the elliptic 
function cp(t) depends on k and pO;consequently, the periods of the motion over M (k, p,) and 
M (k + Sk, po i- 6~~) are distinct, and after a certain time the spacing between PI and P, will 
certainly surpass a certain previously assigned quantity. Therefore, solution (1.3), (1.4) 
is Lyapunov unstable for any p* and k 

Before investigating the orbital 
general approach to the study of this 
systems. 

We fix x,ER" and we introduce 

I = ro; + 00 

satisfying inequality (1.5). 
stability of (1.3), (1.41, we will describe a certain 
property of the periodic solutions of autonomous 

the notation 

[, Sa = {EER":ll6 - zoH< a) 

For all possible EE Se we consider the solutions 

r = q & E), rl (0, E) = 6 (2.1) 

of the autonomous system 

5' = f (5) (2.2) 

The mapping f possesses smoothness ensuring the existence for tE:I, 8~s~ and uniqueness 
of the solution of (2.2). 

We assume that system (2.2) has the periodic solution 

= = rl (6 .%I) (2.3) 
whose orbit we denote by 1. 

Definition. The functional II:1 X &+I yields a stable parametrization, with 
respect to (2.3)) of a set of solutions (2.1) if for each e.>O there is a &>O such that 
for any ee sb the following conditions are satisfied: 

1) The mapping z+t= II&, g) is a homeomorphism of I in I; 
2) For all r~l the following inequality holds 

n11(ntr, &O-s(n(r*ro), 20) li<s 

Let the set of solutions (2.1) allow of a stable parametrization, with respect to (2.3) 
of n. For fixed E the functional II possesses properties following from its definition 

n(O*&)===, TI_n (T,&)= + 00 

At the each time zEI the point q(II@, Q, 5) of the perturbed trajectory is close to 
the point q(Ii(r,s&z,,) of the orbit !I. This correspondence between the perturbed and 
unperturbed solution does not imply the stability of the latter in the Lyapunov sense since 
in general n(r, &)c n(z, 20). However, the presence of a stable parametrization, with respect 



to (2.3) of the set (2.1) is evidently a sufficient condition for the orbital stability of 
the periodic solution (2.3). 

Let us mention a certain algorithm to confirm the existence of stable parametrization 
without using the explicit form of the solution (2.1). 

To do this, we append an equation 

z* = l/g(z) (2.4) 

and the initial condition l;(O)=0 to (2.2). The function g here is continuously differen- 
tiableinthe neighbourhood of the orbit M and for zE Z satisfies the inequality (p is a 
constant) 

g (91 6 4) s= B z==- 0 (2.5) 

To study the behaviour of the integral curves of system (2.2) in the neighbourhood of 
the orbit M we introduce a new independent variable 7. We obtain the equation 

dx/dT = f (5) g (z) 12.6) 
The dependence of the variable r on time in the periodic solution (2.3) is as follows: 

By virtue of inequality (2.5) the functional (2.7) maps I homeomorphically into I. If 
II denotes the inverse mapping to (2.7) z +t= n(r,X& then system (2.6) will allow of the 
periodic solution 

5 (T) = p1 (n (.c, x0)* G) (2.8) 

whose orbit agrees with E!. 

Theorem 1. If the solution (2.8) of system (2.6) is Lyapunov stable, then the set (2.1) 
allows a stable parametrization with respect to the solution (2.3). 

Proof. Let ~(2, 5) denote the solution of system (2.6) with the initial data n*(O, f)= 
E. Here 

9 (II (% II)), %f = '1* tr, 50) 

The Lyapunov stability of the solution (2.81 means that 

(vs>O)(~~>o)(~~~sa)(v~7~): II %(tQ-%f~*~oO)li<~ 

Selecting E to be sufficiently small in (2.91, we obtain by using (2.5) 

g @I* (% E)) > 012 > 0 

(2.9) 

for z&I, ~ES'~. Therefore, the mapping n, :z-+t according to the rule 

is a homeomorphism of I in I. 
Direct verification shows that the function 

is a solution of system (2.2) that becomes E at t c- 0. The last equation in (2.10) follows 
from the uniqueness theorem and is equivalent to the following 

rl* tz. 8 = 17 (II, (T, E), f), 5 -e s* (2.11) 

Relationships (2.9) and (2.11) indicate that the functional 11, yields a stable para- 
metrization, with respect to (2.3), of the set of solutions (2.1) of system (2.2). 

Corollary. If solution (2.8) of system (2.6) is Lyapunov stable, then solution (2.3) of 
system (2.2) is orbitally stable. 

Thus, the fundamental difficulty to reducing on orbital stability investigation to a 
study of the Lyapunov stability of the solution of a certain auxiliary system consists of 
finding the suitable function g:s-+g(s). 

Remark. Formulation of the orbital stability criterion mentioned in the Corollary to 
Theorem 1 is close in its idea to the determination of the Zhukovskii "strength of motion" 

/3/. Zhukovskii chose one of the phase variables of the system under investigation as the 
auxiliary variable T. 

3. We will now investigate the orbital stability of the solutions (1.3) and (1.4) of 
(1.1) by the method mentioned. 

We introduce the suslov variable /lo/ as r by appending the equation 
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T.’ = r (3.1) 
to (1.1). 

We note that the right-hand side of (3.1) satisfies the condition (2.5) since r,,(t)# 0 

by virtue of (1.5). 
Eliminating the variable t from (1.1) and (3.1). we arrive at the system 

2$+*, 2$=-p-$, _!&+ (3.2) 

_&-+v~~+v~, _&-v+-LLy”, A&a+_ 

These equations allow of five first integrals /lo/, three of which agree with the first 
three relationships in (1.2) and the remaining two have the form (A and B are arbitrary 
constants) 

(p" - q8 + y) cos z - (2pq + y’) sin z = A 

(Pa - q2 + y) sin T + (2pq + y’) cos z = B 
(3.3) 

The following 2x-periodic solutions of the system (3.2) correspond to the solutions 
(1.3) and (1.41, 

p = po, q = 0, r = r0 (T) = 12k cos z + 

pea (1 - ke - po4)j’/., y = y0 (7) = k cos t - pox 

y’ = yO’ (-t) = -k sin z, v" = y/ (z) = -pOro (t) 

(3.4) 

In conformity with Sect.2, we study the Lyapunov stability of the solution (3.4) of Eq. 
(3.2) to investigage the orbital stability of the solutions (1.3) and (1.4). We will seek 
the stability condition of the solution (3.4) by the method of Lyapunov functions. To do 
this, setting 

P = PO + Pl, q = pi, r = r. (T) + rl, Y = y. (t) + YX 
Y’ = Yo’ (7) + Yl’, Y” = yo” (z) + y1’ 

and omitting the subscript in the perturbations, we write down the first integrals of the 
perturbed motion equations 

WI = 4pop + 2r,r - 2y + 2pp" + 2q2 + r2 

WZ = 2yop + 2y,'q + yo"r + 2pov + 
royV + SPY + %y + I?f 

(3.5) 

wil = 2Y,Y + 2yo'y' + 2Y/Y + y* + Y'* + r"2 
W, = 2p, cos tp - 2p, sin rq + y co9 z - 

y’ sin 7 + (p” - q”) cos t = 2p q sin ‘c 
W, = 2p, sin up + 2p, 00s zq + y sin z + 

y' COS r + (p" - q’) sin r + 2pq cos r 

We note that all the integrals (3.5) depend on the variable z that plays the part of 
time. This makes necessary the extension of the Pozharitskii /12/ application of the 
Chetayev method /5/ of constructing the Lyapunov function to the case of a time-dependence 
ofthe first integrals of the perturbed motion equations. 

We will introduce some notation. We consider functions twice continuously differentiable 
with respect to z and continuous in t 

V* (X, t) = V*(l) (5, t) + Vi@) (5* t) + O (II z II’) 

(5 E Rn, tER; i=l,...,m) 

Here Vi(l) (Vi@)) are terms, linear (quadratic) in z and T and periodic in t, of the 
Taylor series expansion of Vi@, t) in the neighbourhood of z = 0; o (11 zII*)/ll z)12- 0 as jIzI( + 
0 uniformly in t> t,. 

Then the following proposition that extends the Rizzito theorem /13/ to the case of 
non-autonomous first integrals holds. 

Theorem 2. For the existence of twice continuously differentiable functions $:Rm+R 
such that Q (VI, . . ..V.) and its Hess matrix evaluated for x = 0 are positive definite, 
it is necessary and sufficient that for certain real numbers hl,...,hm the following 
conditions be satisfied: 

1) ig1 niv:nzo 

2) If i$l [V?)12=0 and x # 0, there i hiV? > 0 
i=1 
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The proof of this theorem reproduces the well-known reasoning in /13/ pp.125-128 without 

substantial changes. 
We apply Theorem 2 to construct the Lyapunov function from the integrals (3.5). The 

integral connective that does not contain linear components is 

w= --Po2w1 - 2P,W, - W, + 2kW, = 

-I(O*” - 2k eos z) p2 + (2p,2 -I- 2k COS 7) q2 + 

4k.h w -I- 4popy f 4pd -f- yz + fz -I- (pOr f v)~} 

Let us examine the form (3.6) in a manifold given by the equalities 

The relationships 

w,co = 4pop + 2r@r - 2y = 0 

W,(l) = zpyo+ 24Yo’f ry0” + 2P,T f s&J” = 0 
Ws(l) = yoy -I- yo’y’ -t Yd’Jf = 0 
Wd*)‘= 2p,coszp -2p, sinzq + ycost - y'sinz = 0 
Wdlf = 2P, sin %p + Zp, cos tq t_ y sin z + y' cos z = 0 

(3.7) enable as to express y, y’, y’, r in terms of 

y = - 2pop, y’ = - Ipoq, yv = - $ ( YOP + w’qh 

~=-_tE- 
r0 P 

Using f3.8), we find the form (3.6) in the manifold (3.7) 

W*%(P, 9) = + (alIp? -i- ~~lzaP4 + a22q2) 

a11 (T) = (k cos T + p,')(l - h.2 - 3p,4) 
41, (7) = -ksin T (1 - k3 - 3p,O 
tzpz (t) = pa (1 - 3l9 - PO*) - k (1 - k2 - 3pp*) cos z 

The necessary and sufficient conditions of positive definiteness of 
(3.9) with coefficients periodic in z are sought by using the Silvester 
inequality (1.5). They have the form 

0 d k < po’, k* + 3p,* < 1 

the quadratic form 
criterion and the 

(3.10) 

According to Theorem 2 a sign-definite connective can be constructed from the integrals 
(3.5) by the Chetayev method if the parameters k and p. satisfy inequalities (3.10). The 
periodic motion 13.4) dependent on k and p. for system (3.2) is Lyapunov stable. By virtue 
of the Corollary from Theorem 1, the inequalities (3.10) yield sufficient conditions for the 
orbital stability of the solutions (1.3) and (1.4) of system (1.1). 

Conditions 13.10) determine a domain Q in the plane Okpet of the parameters, whose every 
point corresponds to the orbital stability of the solution (1.31, (1.4) of the equations of 
motion of a Kovalevskaya gyroscope in the case of Bobylev-Steklov integrability (see the 

13.6) 

13.7) 

p and g: 

0.31 

(3.9) 

figure). 

Remark. lo. The solution (1.31, (1.4) being studied is 
stationary in the components p and q of the angular velocity. 
Consequently, the Lyapunov stability of this solution with respect 
to the variable p and g in the sense of the definition from /14/ 
follows from the orbital stability conditions (3.10). 

20. In the Delone case /lo/, when k= 0, uniform rotations 
of a Kovalevskaya gyroscope around axes that do not coincide with 
the principal axis will correspond to the solutions (1.31, (1.4) 
of the system (1.11. The necessary and sufficient conditions for 
Lyapunov stability of these motions 

0 < PO* < w-3 8.11) 

are set up in /15, 16/. For k==O the inequalities (3.10) also 
yield the conditions (3.11) to which the segment OD in the figure 
corresponds. 
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ON THE TRANSITION MODE CHARACTERIZING THE TRIGGERING OF A VIBRATOR 
IN THE SUBSONIC BOUNDARY LAYER ON A PLATE* 

O.S. RYZHOV and E.D. TERENT'EV 

The problem of the development of two-dimensional linear perturbations 
in a boundary layer, generated by the triggering of a vibrator, is 
considered. Fourier transformations in the longitudinal coordinate and 
a Laplace transform in time are used to construct the solution. The 
inverse transforms are evaluated for large values of the characteristic 
time t and all values of the longitudinal coordinate Z. Domains located 
downstream of the vibrator are studied inthe first of which the 
perturbations will have the form of Tollmien-Schlichting waves that go 
over into a wave packet in the second domain. The identity in the 
structure of the wave packets, which are orthonormalized to the maximum 
amplitude for this packet for different frequencies of vibrator oscil- 
lation is noted. 

Vibrating tapes located either on a streamlined surface or within the stream are often 
used in experimental installations for investigating boundary layer stability. Measurements 
are made when the harmonic mode of vibrator operation is built up, the transient that 
originates when it is triggered is considered to be of slight interest and for this reason 
is not considered. If the frequency of the forced oscillations exceeds the critical value, 
the formulation of the appropriate boundary value problem is fraught with serious difficulties 
since the solution must be sought in a class of functions with exponential growth in the 
longitudinal coordinate. Conditions which ensure the uniqueness of the solution are spoiled 
since an exponentially increasing eigenfunction of the homogeneous boundary value problem can 
be appended with arbitrary weight to any solution. The emergence from the situation created 
relies on the postulate proposed in /l/ according to which the solution at each fixed time 

*Prikl.Matem.Mekhan.,50,6,974-986,1986 


